Mapping stand-level forest biophysical variables for a mixedwood boreal forest using lidar: an examination of scanning density

نویسندگان

  • V. Thomas
  • I. Morrison
چکیده

Light detection and ranging (lidar) is becoming an increasingly popular technology among scientists for the development of predictive models of forest biophysical variables. However, before this technology can be adopted with confidence for long-term monitoring applications in Canada, robust models must be developed that can be applied and validated over large and complex forested areas. This will require “scaling-up” from current models developed from high-density lidar data to low-density data collected at higher altitudes. This paper investigates the effect of lowering the average point spacing of discrete lidar returns on models of forest biophysical variables. Validation of results revealed that high-density models are well correlated with mean dominant height, basal area, crown closure, and average aboveground biomass (R2 = 0.84, 0.89, 0.60, and 0.91, respectively). Low-density models could not accurately predict crown closure (R2 = 0.36). However, they did provide slightly improved estimates for mean dominant height, basal area, and average aboveground biomass (R2 = 0.90, 0.91, and 0.92, respectively). Maps were generated and validated for the entire study area from the low-density models. The ability of low-density models to accurately map key biophysical variables is a positive indicator for the utility of lidar data for monitoring large forested areas. Résumé : Le lidar est en voie de devenir une technique de plus en plus populaire parmi les chercheurs pour le développement de modèles de prédiction des variables biophysiques de la forêt. Cependant, avant que cette technologie puisse être adoptée avec confiance pour le suivi à long terme au Canada, des modèles robustes pouvant être appliqués et validés pour des superficies de forêt vastes et complexes doivent être développés. Cela va exiger de passer des modèles courants développés à partir d’une forte densité de données lidar à une plus faible densité de données collectées à plus haute altitude. Cet article se penche sur l’effet de la diminution de l’espacement ponctuel moyen des échos individuels du lidar sur les modèles de variables biophysiques de la forêt. La validation des résultats a montré que les modèles à forte densité sont bien corrélés avec la hauteur dominante moyenne, la surface terrière, la fermeture du couvert et la biomasse aérienne moyenne (R2 = 0,84, 0,89, 0,60 et 0,91 respectivement). Les modèles à faible densité ne pouvaient pas correctement (R2 = 0,36) prédire la fermeture du couvert. Cependant, ils ont fourni des estimations légèrement meilleures pour la hauteur dominante moyenne, la surface terrière et la biomasse aérienne moyenne (R2 = 0,90, 0,91 et 0,92 respectivement). Des cartes ont été générées et validées pour toute la zone d’étude à partir de modèles à faible densité. La capacité des modèles à faible densité à cartographier correctement les variables biophysiques importantes est une indication positive de l’utilité des données lidar pour le suivi de vastes zones de forêt. [Traduit par la Rédaction] Thomas et al. 47

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leaf Area Index (LAI) Estimation in Boreal Mixedwood Forest of Ontario, Canada Using Light Detection and Ranging (LiDAR) and WorldView-2 Imagery

Leaf Area Index (LAI) is an important input variable for forest ecosystem modeling as it is a factor in predicting productivity and biomass, two key aspects of forest health. Current in situ methods of determining LAI are sometimes destructive and generally very time consuming. Other LAI derivation methods, mainly satellite-based in nature, do not provide sufficient spatial resolution or the pr...

متن کامل

Prediction of Macronutrients at the Canopy Level Using Spaceborne Imaging Spectroscopy and LiDAR Data in a Mixedwood Boreal Forest

Information on foliar macronutrients is required in order to understand plant physiological and ecosystem processes such as photosynthesis, nutrient cycling, respiration and cell wall formation. The ability to measure, model and map foliar macronutrients (nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg)) at the forest canopy level provides information on the spatial ...

متن کامل

Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar

A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much ...

متن کامل

LiDAR Sampling Density for Forest Resource Inventories in Ontario, Canada

Over the past two decades there has been an abundance of research demonstrating the utility of airborne light detection and ranging (LiDAR) for predicting forest biophysical/inventory variables at the plot and stand levels. However, to date there has been little effort to develop a set of protocols for data acquisition and processing that would move governments or the forest industry towards co...

متن کامل

Forest Stand Types Classification Using Tree-Based Algorithms and SPOT-HRG Data

Forest types mapping, is one of the most necessary elements in the forest management and silviculture treatments. Traditional methods such as field surveys are almost time-consuming and cost-intensive. Improvements in remote sensing data sources and classification –estimation methods are preparing new opportunities for obtaining more accurate forest biophysical attributes maps. This research co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006